Self-assembly of azide containing dipeptides | Boulder Peptide Symposium

September 15-18, 2025

LIVE, In Person at the St. Julien Hotel in Boulder, Colorado
The only conference focused solely on the pharmaceutical development of peptide therapeutics.

Self-assembly of azide containing dipeptides

Self-assembly of azide containing dipeptides

Abstract

Functional structures and materials are formed spontaneously in nature through the process of self-assembly. Mimicking this process in vitro will lead to the formation of new substances that would impact many areas including energy production and storage, biomaterials and implants, and drug delivery. The considerable structural diversity of peptides makes them appealing building blocks for self-assembly in vitro. This paper describes the self-assembly of three aromatic dipeptides containing an azide moiety: H-Phe(4-azido)-Phe(4-azido)-OH, H-Phe(4-azido)-Phe-OH, and H-Phe-Phe(4-azido)-OH. The peptide H-Phe(4-azido)-Phe(4-azido)-OH self-assembled into porous spherical structures, whereas the peptides H-Phe(4-azido)-Phe-OH and H-Phe-Phe(4-azido)-OH did not form any ordered structures under the examined experimental conditions. The azido group of the peptide can serve as a photo cross-linking agent upon irradiation with UV light. To examine the effect of this group and its activity on the self-assembled structures, we irradiated the assemblies in solution for different time periods. Using electron microscopy, we determined that the porous spherical assemblies formed by the peptide H-Phe(4-azido)-Phe(4-azido)-OH underwent a structural change upon irradiation. In addition, using FT-IR, we detected the chemical change of the peptide azido group. Moreover, using indentation experiments with atomic force microscopy, we showed that the Young's modulus of the spherical assemblies increased after 20 min of irradiation with UV light. Overall, irradiating the solution of the peptide assemblies containing the azido group resulted in a change both in the morphology and mechanical properties of the peptide-based structures. These ordered assemblies or their peptide monomer building blocks can potentially be incorporated into other peptide assemblies to generate stiffer and more stable materials. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

Thumbnail image of graphical abstract

This manuscript describes the self-assembly of three aromatic dipeptides containing an azide moiety. The azido group of the peptide can serve as a photo cross-linking agent upon irradiation with UV light. To examine this effect on the self-assembled structures, we irradiate the assemblies in solution for different time periods. Overall, this process resulted in a change both in the morphology and mechanical properties of the peptide-based structures. These ordered assemblies or their peptide monomer building blocks can potentially be incorporated into other peptide assemblies to generate stiffer and more stable materials.


s2Member®
loading...