By Olivia Trani, Oak Ridge National Laboratory---
One group of peptides, known as antimicrobial peptides (AMPs), serves as an innate line of defense against microbial diseases in animals, plants, and other multicellular organisms. Given their ability to quickly identify and take down a wide range of pathogens, these peptides are considered promising therapeutic candidates for treating bacterial infections where antibiotics have fallen short.
Neutron experiments led by scientists from the Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) have produced new details into how AMPs block bacterial infections. By studying an effective AMP called aurein 1.2, the team pieced together the molecular mechanics behind the peptide's ability to deal significant damage to bacterial cells in small quantities. Their findings, published in BBA Advances, could help pharmaceutical experts develop drugs that attack antibiotic-resistant bacteria more efficiently and effectively.
Full article available at Phys.org