A Novel Biochemical Platform for Efficient Peptide and Protein Production | Boulder Peptide Symposium

September 15-18, 2025

LIVE, In Person at the St. Julien Hotel in Boulder, Colorado
The only conference focused solely on the pharmaceutical development of peptide therapeutics.

A Novel Biochemical Platform for Efficient Peptide and Protein Production

A Novel Biochemical Platform for Efficient Peptide and Protein Production

Peptides and proteins are essential biomolecules with broad applications across various industries, including pharmaceuticals, agriculture, veterinary medicine, generics, and cosmetics. However, the development of efficient production processes at an industrial scale remains challenging, as traditional methods such as chemical synthesis and recombinant expression often fail to meet the growing demand.

To address these challenges, Numaferm has introduced a novel biochemical production platform known as Numaswitch. This platform is designed to produce peptides and proteins of all lengths and functionalities with high yield and quality. The Numaswitch approach involves fusing target peptides or pepteins to Switchtag proteins, which facilitate the production of fusion proteins as inclusion bodies in Escherichia coli cells. Following extraction, Switchtags play a crucial role in promoting the correct refolding of the targets in the presence of Ca²⁺ ions, effectively overcoming the common issue of low refolding efficiencies associated with conventional IB methods. Additionally, the platform utilizes a specially engineered Numacut TEV protease, which enables precise, scarless cleavage of the Switchtag, resulting in the release of target peptides or proteins with a native N-terminus and no additional amino acids.

Numaswitch is a highly reliable and universal platform for peptide and protein production aligned with the principles of green chemistry. It significantly reduces the use of hazardous raw materials, improving the safety of both the production process and the final product. Numaswitch offers a cost-effective, efficient, and sustainable alternative to traditional methods like chemical synthesis and other recombinant expression systems.


s2Member®
loading...