The importance of peptide-based nanomaterials is rapidly expanding due to their biocompatibility, tendency to self-assemble, structural diversity and design flexibility, ease of cellular uptake, and ability to function as a drug delivery carrier. Previously, we synthesized rhodamine B-dipeptide conjugates, RhB-KK/RhB-KE (RhB: Rhodamine B, K: Lysine, E: Glutamic acid), that form stable nanotubes at physiological pH (Imax 460 nm) but dissociate into highly fluorescent monomers (Imax 580 nm) within the acidified interior of endosomal/lysosomal cellular compartments. In this work, we have expanded the utility of our rhodamine-peptide nanotubes into a drug delivery carrier by (1) chemically conjugating 5-fluorouracil (5-FU) to RhB-KK/RhB-KE via a succinic acid linker using solid-phase peptide synthesis (SPPS) and (2) co-assembling them with CPT-KK nanotubes (CPT: Camptothecin). pH-Dependence studies have been carried out using UV-Vis, circular dichroism (CD), and fluorescence spectroscopy. RhB-KK-5-FU self-assembled into nanospheres with a diameter of ~ 16 nm, as characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The succinic acid linker is cleaved by intracellular enzymes through hydrolysis, releasing the free drug within the cells. Co-assembly of CPTKK and RhB-KE nanotubes resulted in helical wrapping of CPTKK around RhB-KE nanotubes. The cellular uptake would be quantified using flow cytometry, and the movement of the drug inside different cancer cell lines would be visualized in real time using confocal laser scanning microscopy (CLSM). The cellular uptake pathway(s) employed will be investigated. We are also screening the structural changes that will enhance endosomal escape and increase the bioavailability of the drug. The cytotoxicity of the system will be measured using the MTS assay. In summary, our developed system would self-report the nanotubular assembly before it gets endocytosed. Once uptaken by the cells, it would emit 580 nm (from the lysosomes), indicating the monomeric state while simultaneously releasing the free drug inside the cells.